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Abstract

We consider a body endowed with the ®ne structure of very many, very small gyroscopes and describe it as a sort of

composite (perhaps constrained) Cosserat continuum (gyrocontinuum). The gyroscopes are supposed to interact sig-

ni®cantly with the macroscopic motion of the body via the torques generated by changes of moment of momentum

imposed upon them by the macromotion. Thus, we focus essentially on the consequences of constraining the spins to

have ®xed intensity about some material axis. We conclude the paper studying how the behaviour of a vibrating beam is

a�ected by the special microstructure. A linear discrete gyroelastic body was already considered; (D' Eleuterio, G.M.T.,

1984. J. Appl. Mech. 55, 488±489; D' Eleuterio, G.M.T., Hughes, P.C., 1984. J. Appl. Mech. 51, 415±422); we gen-

eralise, expand and put their ideas on a ®rm basis. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We conceive a continuum with gyroscopic microstructure as the model of a fabric bearing a large
number of very small gyroscopes, spinning about axes that are pin-®xed to a ¯exible frame: obviously, the
movement of the frame will be in¯uenced by the gyroscopes via the reactions arising in the pins.

With a more complex mechanical arrangement, we could further imagine the gyroscopes bound to the
¯exible frame with pliant gimbals; then, the reactions would depend on the changes of direction of the
gyroscopic axes relative to the frame; in this case the full angular velocity of the gyroscopes (and not only its
gyroscopic component) would be an independent variable.

Thus, we can envisage the following three di�erent cases:
1. gyroscopes with gyroscopic axes bound via pliant (and possibly controllable) devices to the frame;
2. gyroscopes with `material' gyroscopic axes and variable (e.g. externally controllable) spin intensity (Con-

straint 1);
3. gyroscopes as above, but with ®xed spin intensity (Constraint 2).
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We begin by studying the ®rst case as the most general one and then discuss the other cases as particular
occurrences.

2. The material element

2.1. Geometry and mass

As in Capriz (1989), every material element of our continuum is akin to a dynamic system, the state of
which can be described by a ®nite number of order parameters; here such microscopic system is a rigid
gyroscope within an a�nely deformable capsule. The capsule participates in the gross deformation of the
body. On the contrary, the gyroscopes are rigid; their spin inertia is prominent; the centres of gravity of
capsule and gyroscope are assumed to coincide always. Thus, we are concerned with a very peculiar and
complex type of Cosserat body.

In a reference natural placement, the element has a volume d�vol�� and its mass is the sum of the mass
qg
�d�vol�� of the gyroscope and the mass qc

�d�vol�� of the capsule. Notice that qg
� and qc

� are not real
densities, rather they are virtual densities expressing mass per total (rather than fractional) volume. In any
other placement the volume of the element becomes d�vol� � id�vol�� (here i is the jacobian determinant),
whereas masses are separately preserved. Introducing appropriate current virtual densities, conservation of
mass is assured if

qgi � qg
�; qci � qc

�:

The gyroscope being rigid, its real density is constant; hence the value m of its current volume fraction
changes from its reference value m� as follows:

m � m�
i
:

On the contrary, the real density of the capsule depends in a more complex manner on i:

�qc � 1ÿ m�
iÿ m�

�qc
�;

note that i must always exceed m�, in view of the rigidity of the gyroscope. Use of virtual, rather than real,
densities makes some developments simpler.

Always in a reference placement, the Euler tensor of the gyroscopes per unit total mass of the material
element will be denoted by Eg

�, the corresponding inertia tensor by J g
� :

J g
� :� � trEg

��I ÿ Eg
�

(I , the identity tensor); the largest eigenvalue of J g
� by a1; the other (double) eigenvalue by a2; the unit vector

of the gyroscopic axis by g�

J g
� � a1g� 
 g� � a2�I ÿ g� 
 g��: �1�

In any other placement, the eigenvectors of the inertia tensor will change under a rotation Q (a proper
orthogonal tensor) as follows:

g � Qg�; J g � QJ g
�QT: �2�

Below Q will denote the absolute rotation of the gyroscope and wg :� ÿ1=2e _QQT (e is Ricci's tensor), its
absolute spin vector.

As the capsule is part of the continuum, its a�ne deformation is described by the usual tensors: the
gradient F :� ox=ox� or its associated rotation R and stretch U .
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If Ec
� is the Euler tensor of the capsule per unit total mass in the reference placement, in the actual

placement it is,

Ec � FEc
�F

T:

2.2. Kinetic energy

Let us now address the problem of the appropriate expressions for the kinetic energy and of the torque
of inertia for each material element.

If v�x� is the gross velocity ®eld of the continuum, let L :� gradv, wc :� ÿ1=2rotv and D :� sym L; wc,
spin vector and D, rate of deformation in the gross motion.

The material element is a compound of capsule and gyroscope; translational terms apart, the kinetic
energy of the former component derives from its a�ne deformation as described by the local value of F ,
that of the latter is purely rotational and depends on wg. Thus, the non-translational kinetic energy per unit
mass of the material element is given by

j :� 1
2
wg � J gwg � 1

2
�LTL� � Ec: �3�

In terms of the eigenvectors of J g (see Eq. (1)), the angular momentum of the gyroscope per unit mass of
the element can be written as: (wg

kg :� �wg � g�g and wg
?g :� g � wg � g),

J gw � a1wg
kg � a2wg

?g; �4�

and its kinetic energy of rotation per unit mass:

1
2
wg � J gwg � 1

2
a1wg

kg
2 � 1

2
a2wg

?g
2:

The time derivative of j must be computed taking into account that, whereas the eigenvalues a1 and a2

are time independent (even though they could vary from point to point in the continuum we take them as
absolute constants here: the continuum is supposed to be `gyroscopically homogeneous'), the directors g
change in time:

q _j � a1wg
kg � �wg

kg�� � a2wg
?g � �wg

?g�� � Ec � LT� _L� L2�:

2.3. Kinematics of the gyroscope

The gyroscope within each element is entrained by the capsule; totally as concerns translation, not at all
or only partially as concerns rotation.

To describe the motion of entrainment we must stipulate how the linkage between capsule and gyroscope
gimbals is e�ected; the linkage is a matter of engineering design rather than theory. The anchoring could
correspond possibly to a situation where the entrainment parameter is the rotation tensor R associated with
F , but we believe such a possibility rather abstruse. More practical, we believe, is the following arrange-
ment: take ± in the reference con®guration ± the direction g�, a particular plane through g� (decided upon
at the design stage), of which the normal is the unit vector a�, and the normal to g� within this plane.

As this triad need not be one of principal directions for the stretch U , it will not remain orthogonal;
actually we need to involve the orthogonal triad, which is determined by the gross motion from the ref-
erential one according to the following rules:

ĝ :� Fg�
jFg�j ; â :� F ÿTa�

jF ÿTa�j ; â� ĝ: �5�
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The entrainment rotation of the capsule Q̂, i.e. the orthogonal tensor which moves g� into ĝ and the
plane normal to a� into the plane normal to â, is completely determined by the gross motion (see Eq. (5)),

Q̂ � Fg�
jFg�j 
 g� � F ÿTa�

jF ÿTa�j 
 a� � F ÿTa�
jF ÿTa�j

�
� Fg�
jFg�j

�

 �a� � g��: �6�

Having at our disposal the essential notation we are now able to make explicit conditions 3, 1, 2
mentioned in the introduction. In case 1, the gross motion (more precisely the local value of F ) does not
impose constraints on Q; however, we presume that there be an interaction due, say, to an elastic bond
opposing any discrepancy of Q̂ from Q or to a control over such discrepancy, then, we need to split Q into
the product GQ̂, where G, an objective orthogonal tensor, is the rotation of the gyroscope relative to the
deformed capsule; i.e. a rotation about ĝ in cases 2 and 3, but arbitrary, otherwise:

g � Gĝ: �7�
In case 1, the elastic bond imagined above depends on the whole of G; alternatively the whole G could be

one of the control variables. In any case, G describes the relative motion of the gyroscope. The relative
motion could be constrained, e.g. the speed of relative rotation could be ®xed (case 3) or controlled (case 2);
in cases 2 and 3, the relative precession would be constrained to vanish. The choice, in case 2, is to clinch the
gyroscopic axis to the capsule and operate on the gyroscopic velocity as the only (scalar) control variable, in
which case, ĝ would be an eigenvector of G and the relative spin of the gyroscope w r would be parallel to
g � ĝ:

G � eÿheĝ; wr � _hĝ

with h, angle of rotation of the gyroscope about its axis ĝ, counted from the plane of normal â.
In general, Eqs. (5) and (7) entail for the evolution of any vector attached to the gyroscope as, for in-

stance, g the rule,

_g � � _GGT � G _̂QQ̂TGT�g �8�
calling wr and we, the respective relative and entrainment spin vectors of the gyroscope,

wr :� ÿ1
2
e _GGT; we :� ÿ1

2
e

_̂QQ̂T; �9�
then, Eq. (8) becomes

_g � wg � g; wg � wr � Gwe: �10�
Recalling Eq. (6) we can express we making explicit its dependence on D and wc. Let us ®rst introduce the

symbol, w D
n , for the spin of a unit vector n under a deformation rate D:

wD
n :� n� Dn;

and the symbol Pn for the projection of vectors in the plane normal to n:

Pn � I ÿ n
 n:

Then, we have

we � wc � 1
2
�I � Pâ�ĝ��wD

ĝ ÿ wD
â �

or, introducing the third order tensor h : V! Sym,

h :� ÿĝ 
 eĝ ÿ ��eĝ� 
 ĝ�T � â
 eâ� ��eâ� 
 â�T ÿ 2 sym�â
 ĝ� 
 �â� ĝ�
(where �aijh�T � �ahji� and it can be shown that �eĝ 
 ĝ�ihj � ��eĝ 
 ĝ�ijh�T), also
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we � wc ÿ 1
2
hTD � ÿ1

2
�e� hT�L:

In any case, it is convenient to split wr into the sum of its vector components along g and normal to it:

wr � xg � cg � p; �11�
where x is the gyroscopic speed and cp (p, an appropriate unit vector) the speed of precession (both relative
to the capsule and possibly controlled). Thus, the vector components of the total spin w parallel and normal
to g (and thus along principal directions of J g) are

wg
kg � g�x� xe�; xe :� g � G�wc ÿ wD

â �;
wg
?g � g � �cp � qe�; qe :� ÿg � G�wc � wD

ĝ �: �12�

2.4. Remarks

To make some of the previous assumptions clearer, here we explore the consequences of conceiving a
di�erent kind of linkage. Let us assume the latter to be a compound of a rigid spherical shell of absolutely
negligible mass, included in the capsule and housing the gyroscope. There will be a discrepancy between the
simply rotational motion of the inclusion and the a�ne deformation of the capsule; e.g. we may assume
them to be joined via elastic bonds (and take the reference placement as one showing no stresses) with the
outer surface of the shell coinciding with the inner surface of the capsule.

Thus, if m� is a material vector issuing from the center of the shell and initially pointing on its surface,
it will become, in the present placement, m � Fm� while the point on the shell identi®ed by it has moved
to m̂ � Q̂m�. As for the hypothesis of elasticity, it can be made explicit, at least in quasi-static instances,
through a requirement of minimum for a potential depending on the length jmÿ m̂j of the bond; e.g. it
implies for Q̂ the condition,

min
Q̂2Orth�

m� � �F T ÿ Q̂T��F ÿ Q̂�m� 8m�;

and thus, Q̂ � R by Grioli's theorem (Truesdell and Toupin, 1960).
This result, occurring in a very special case, though interesting for applications, involves constitutive

assumptions (made explicit here through the minimum condition in a particular contest) and thus cannot be
taken a priori at this stage of the kinematic modelling. Exploring in depth the consequences of the par-
ticular construction envisaged here would lead to a more complex theory than the one we aim at estab-
lishing, because two microstructures ought to be described: the gyroscope and the shell-linkage.

An ancillary premise to the developments of the following sections is the study of Q̂ when the stretch is
small; it is possible to show that Q̂ di�ers from R signi®cantly even in this limit case. Let U � I � E and
o�jEj� denote any function of E of the order larger than one, thus negligible for small deformations of E
when compared with ®rst order terms. Then, by Eq. (5), the rotation Q̂ (cf. Eq. (6)) can be written

Q̂ � R
Ug�
jUg�j
�


 g� � Uÿ1a�
jUÿ1a�j 
 a� � Uÿ1a�

jUÿ1a�j
�

� Ug�
jUg�j

�

 �a� � g��

�
� R I

� � Pg�Eg� 
 g� ÿ Pa�Ea� 
 a� ÿ ��Pg�Eg�� � a� � �Pa�Ea�� � g�� 
 a� � g� � o�E�	;
which shows how the di�erence between Q̂ and R depends on ®rst order terms.

2.5. Additional assumptions

Here, we analyse some results of the previous paragraphs and introduce additional assumptions aiming
at a reasonable simpli®cation of the problem. The assumptions listed here allow us to compare our model
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with the results of D'Eleuterio (1984) and D'Eleuterio and Hughes (1984). Furthermore, it will be useful to
call upon them when focusing on practical issues.

(1) We disregard the kinetic energy and inertia torque due to the a�ne motion of the capsule (As-
sumption 1). This assumption is justi®ed by the idea that, in most concrete instances, the kinetic energy of
rotation of the gyroscope, as implied by a very high gyroscopic velocity, will be predominant in the material
element.

Thus, developments in the following paragraphs will apply only when the following approximate ex-
pression is acceptable (cf. Eq. (3)):

j � 1
2
a1�x� xe�2 � 1

2
a2�g � �cp � qe��2: �13�

(2) The ®rst eigenvector of J g, namely a1, is taken to be much larger than the second, a2; thus, we may
neglect all contributions of the inertia torque of the gyroscope which are the time derivatives of the
component of the angular momentum orthogonal to the gyroscopic direction (Assumption 2):

a2 � a1:

(3) The component of the total spin along the gyroscopic axis, within the approximation, is due only to
the gyroscopic speed, which will be much higher than the component of the spin of entrainment along that
axis; under such circumstances, we neglect xe with respect to x (Assumption 3):

xe � x:

(4) The spin of the linkage on the capsule may be simply (or at least predominantly) given by wc (As-
sumption 4; e.g. the linkage's triad lays along the principal directions of D):

ÿ1
2
hTD� wc:

(5) Finally, often the rate of variation of this spin, _wc, happens to be orthogonal to g (Assumption 5; in
quasi-static instances this statement can be taken a priori, deciding upon the module of _wc):

_wc � g � xjwc � gj:
These ®ve assumptions give the background of the model proposed by D'Eleuterio (1984) and

D'Eleuterio and Hughes (1984).
In the following part of the text, we will drop the su�x g from quantities de®ned on the gyroscope, thus

in particular J g will be denoted simply as J , wg as w.

3. Inertia

3.1. The kinetic energy theorem; the inertia of embedded gyroscopes

Eqs. (1) and (2) imply Poisson's formula,

_J � WJ ÿ JW ;

which, in turn, implies,

_Jw � ÿw� Jw; w � _Jw � 0;

so that

_j � w � J _w � �Jw�� � w:
As per elementary dynamics, we take here for the inertia torque per unit mass,
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bIg :� �Jw��; �14�
where (cf. Eqs. (4) and (12))

�Jw�� � a1�x� xe��cp � qe� � a1g�x� xe�� � a2g � �cp � qe��: �15�
If Constraint 2 applies (i.e. c � 0, GTg � g and g � Gn � g � n 8n and ox=os � 0) Eq. (15) simpli®es as

follows:

�Jw�� � a1 �x
� � g � �wc ÿ wD

ĝ ���wc � wD
â � � g � g��wc ÿ wD

ĝ �� � wc � wD
â � � g

�� a2Pg�wc ÿ wD
â ��: �16�

By Assumption 2, the last term can be neglected; adding Assumption 3, we get the approximate ex-
pression:

�Jw�� � a1 x�wc
� � wD

â � � g � g��wc ÿ wD
ĝ �� � wc � wD

â � � g
�
: �17�

Finally, when also Assumptions 4 and 5 hold, we get from Eq. (17), the expression of the inertia torque
adopted by D'Eleuterio (1984) and D'Eleuterio and Hughes (1984).

�Jw�� � 1
2
a1xg � rotv: �18�

3.2. Inertia of composite material points

We recall two fundamental properties of inertia relevant, when extending concepts in elementary dy-
namics to the dynamics of complex continua:
1. the power per unit mass of the inertia forces is the opposite of the time derivative of the kinetic energy

per unit mass,
2. the virtual power of inertial forces coincides with the ®rst variation of an appropriate functional.

Condition 1 is satis®ed, when the inertia force on the gyroscopes is chosen in accordance with Eq. (14)
and that on the capsule is q _v:

�1
2
v2 � 1

2
w � Jw�� � _v � v� �Jw�� � w

with w depending on gradv in a manner that needs attention when focusing on condition 2.
The virtual power of accelerations is given by

P�acc �
Z

V �
q � _v � v̂� bIg � ŵ�dV ; �19�

where the virtual absolute spin of the gyroscopes ŵ is equal to:

ŵ � ŵr � Gŵe

� x̂g � g � q̂ÿ 1
2
G rot v̂ÿ 1

2
GhTsymgrad v̂: �20�

Note that the ®eld g of present directions of the gyroscopic axes and the ®eld G of present gyroscopic
rotation derives from the time integration of the spin equation ( _g � w� g and _G � ÿ�ew�G). Arbitrary
variations are allowed only for the position of the capsule (and they are expressed through the virtual
velocity v̂), the angular coordinate of the gyroscope relative to the capsule (the virtual angular velocity x̂)
and the inclination of the gyroscope within it (the virtual precession velocity q̂).

By Eq. (20),

bIg � ŵ � bIx̂� �bIq � q̂� 1
2
div��e� h��GTbIg�� � v̂ÿ 1

2
divf��e� h��GTbIg��Tv̂g; �21�
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where the symbols

bI :� bIg � g; �bIq :� bIg � g;

were introduced. By integration over a ®t region V �, we get

P�acc �
Z

V �
qf� _v� 1

2
div��e� h��GTbIg��� � v̂� bI x̂� �bIq � q̂gdV ÿ 1

2

Z
oV �

qv̂ � ��e� h��GTbIg��ndS: �22�

We may interpret this formula as indicating that the gyroscopic rotational inertia contributes to
translational inertia in the bulk and on the boundary.

Within the hypotheses that led to Eq. (18), the above mentioned contributions simplify; in particular, the
body force per unit mass due to the torque of inertia of the gyroscopes becomes

1
2
div��e� h��GTbIg�� � ÿ1

2
rot�1

2
a1xg � rotv�:

4. Balance laws of the continuum

In the previous paragraph, the state of the material element was described through some ®xed para-
meters (the eigenvalues a1 and a2 of J g) and a variable vector giving axis and amount of a rotation from a
reference state: the typical microstructure of a Cosserat continuum; however, formal aspects apart, the
fabric of the device indwelling each material element lends speci®c properties to our body. To linger, for the
moment, on formal aspects, advantage can be taken of results available in the literature (Capriz, 1989;
Capriz and Giovine, 1997).

Conservation of mass and balance of momentum are expressed, as usual, through the equation of
continuity and Cauchy's equation; though the stress tensor T need not be symmetric: the equation of
balance of moment of momentum requires that

eT �ATf� �gradAT�S: �23�
A last balance equation steps in for microstructural quantities:

q
ov
o _m

�
ÿ ov

om

�
� qbÿ f� divS:

Here A denotes the in®nitesimal generator of rotations for the microstructure, ÿf the equilibrated
microforce and S the microstress tensor, v is the density of the kinetic co-energy of the microstructure m, b
the density per unit mass of the external actions on the microstructure.

All these terms may be displayed into a more precise form once the microstructure is de®ned. In our case,
it is convenient to express the absolute rotation of the gyroscope Q through its axial vector q:

Q � eÿeq;

so that we may let m be q; then _m is w :� ÿ 1
2
e _QQT � _q.

If we describe also the rotation of the observer through an axial vector r, A becomes a second order
tensor A (cf. also Eq. (10): in a rigid rotation r of the gyrocontinuum with gyroscopes at rest with respect to
their capsules, their spin is _q � G_r):

A � oq�r�
or

����
r�0

� G:

Therefore, Eq. (23) takes the explicit form

eT � GTz� �grad GT�S; �24�
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where z and S are the vector (torque per unit volume) and second order tensor (torque per unit oriented
surface) representing f and S in the present model.

Recalling results displayed in Section 3.1, the balance of micromomentum is ruled by the equations:

ÿz� divS � qbg � qbIg; x 2 Vs;
Sn � fg; x 2 oVs;

�
�25�

where bg and fg are external torques applied in the unit mass and on the unit surface respectively, and Vs

and oVs are the domain occupied by the body in the present con®guration and its surface respectively.
The equations of balance of momentum for the macromotion, by the result of Section 3.2, become

divT � b � q_v� 1
2
qdiv ��e� h��GTbIg��; x 2 Vs;

Tn � f � 1
2
q��e� h��GTbIg��n; x 2 oVs:

�
�26�

4.1. Unconstrained gyroscopes' spins ± splitting of micromomentum

The power of z and S can be decomposed so as to put in evidence the contributions due to the movement
of the gyroscope relative to the capsule:

z � wr � S � gradwr � fx� s � gradx� �z � q� �S � gradq �27�
having de®ned the ®elds:

f :� z � g � S � gradg;
s :� ST g;
�z :� z� g ÿ e��gradg�ST�;
�S :� �eg�S;

�28�

their constitutive features seem easier to understand than those of z and S directly: f is the intensity of a
couple per unit volume acting along the gyroscopic axis, �z is a torque per unit volume working with changes
of directions of that axis, s � n and �Sn are the corresponding objects per unit oriented surface.

Note the inverse relations:

z � fg � g � �zÿ �S � grad g�g � 2skw��grad g�S�g;
S � s
 g ÿ �eg��S;

and, with the use of Eq. (28):

ÿf� div s � �ÿz� divS� � g;
ÿ�z� div �S � �ÿz� divS� � g;

s � n � g � Sn; �Sn � �Sn� � g:

From Eqs. (24)±(26), we get the local equations of balance of micromomentum in terms of components
along g and orthogonal to g:

ÿf� div s� qb � qbI

ÿ�z� div �S � q�bq � q�bIq

�
x 2 Vs;

s � n � /
�Sn � �fq

�
x 2 oVs;

8>><>>: �29�

where the components of the external actions on gyroscopes are:

b :� bg � g; �bq :� bg � g; / :� fg � g; �fq :� fg � g:
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4.2. Constrained gyroscopes ± variable spins about material axis

If Constraint 1 applies (each gyroscope turns about a material axis), we have to add to the analysis
developed in the previous section, the kinematic constraint of null relative precession:

c � 0 () w � xg ÿ 1
2
G�e� hT�gradv: �30�

To determine the reactions to this constraint, we assume it to be perfect: microforces and stresses can be
decomposed into active and reactive parts, and the density of the internal reactive power is null for any
motion allowed by the constraint.

The virtual absolute spin of the gyroscopes is given by Eq. (20); in the present, constrained case its
gradient is equal to

grad ŵ � x̂gradg � g 
 grad x̂ÿ 1
2
grad�G rot v̂� ÿ 1

2
grad�GhTsymgrad v̂�: �31�

Consequently, the density of the internal power of the reactive stresses becomes

p
r

int :� f
r

x̂� s
r � grad x̂ÿ 1

2
fh�GT z

r� � h��gradGT �S
r

� ÿ 2sym T
r g

� symgrad v̂ÿ 1
2
�GT z

r � �grad GT �S
r

ÿ eT
r � � rot v̂ÿ 1

2
�GT S

r

� � grad��e� hT �grad v̂�: �32�

Thus, condition p
r

int � 0, 8v̂, 8x̂ implies

f
r

� 0; s
r � 0;

h�GT z
r� � h��gradGT �S

r

� ÿ 2sym T
r � 0;

GT z
r � �gradGT �S

r

ÿ eT
r � 0;

S
r

� 0;

�33�

and, by de®nitions (28) and decomposition (11) for z
r
, we ®nd

�S
r

� 0; z
r � g � �z

r
; T

r � 1
2
�e� h��GT z

r�: �34�
We conclude that the only reaction entering the equilibrium equations is �z

r
, which can be evaluated

through the second of Eq. (29) and introduced in the Cauchy stress tensor,

T � T
a � 1

2
�e� h��GT �g � �z

r��; �35�

before solving Eq. (26). Finally the ®rst of Eq. (29) is `pure' ± as no traces of the reactions ± appear there.

4.3. Constrained gyroscopes ± constant spins about material axis

Let us now add the constraint of ®xed spin intensity (Constraint 2):

x � �x � const: �36�
Then, the terms in the virtual internal power Eq. (32) involving x̂ vanish. Thus, we have no information

about f
r

, while s
r

is still null as a consequence of S
r

� 0; the other conclusions, second and ®rst of Eq. (33),
®rst of Eq. (34) and (35), drawn in the previous case still hold true, while the ®rst of Eq. (29) contains the
reaction z

r
, which now has a non-zero component along g.
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The reaction �z
r
, normal to the gyroscopic axis, can still be evaluated by the second of Eq. (29), while the

constraint of constant gyroscopic speed gives for f
r

:

f
r

� ÿf
a
� div s

a � qbÿ qa1 _xe:

As already mentioned, under this constraint the expression (15) of the derivative of the angular mo-
mentum simpli®es to Eq. (16).

5. Examples

5.1. Plane waves

To o�er an example of application, we consider a linear elastic homogeneous material with Lam�e's
constants k and l, assume small perturbations from a natural equilibrium state described through the ®eld
of small displacements u, neglect body forces b and take s null. We consider the case of Constraint 2
(constrained gyroscopes spinning about material axes with constant intensity) and accept the approximate
expression (17) for the inertia force. Then, the equation of motion reduces to

q�uÿ lDuÿ �k� l�graddivuÿ 1
2
rot 1

2
k

h
� rot _u� �gradk� _u

i
� 0; �37�

where k � qa1xg can be called the `gyricity' ®eld (cf. D'Eleuterio (1984) for this name). Assume k to be
constant (almost everywhere) and uniform and a reference be chosen with ®rst axis along g.

Let us look for solutions of Eq. (37) depending on one spatial coordinate, x1, and time, s:

qu1;ss ÿ �k� 2l�u1;11 � 0;

qu2;ss ÿ lu2;11 ÿ qa1x
4

u3;11s � 0;

qu3;ss ÿ lu3;11 � qa1x
4

u2;11s � 0;

8><>:
under the form (j 2 f1; 2; 3g):

uj � exp�vjx1 � 1s� �38�
with complex vj and 1.

From Eq. (37), we get the three conditions on the four unknown complex numbers vj; 1:

v2
1 ÿ q12

k�2l � 0;

v2
2 � qa1x1

4l v2
3 ÿ q12

l � 0;

v2
3 ÿ qa1x1

4l v2
2 ÿ q12

l � 0;

8>>><>>>: �39�

and a solution in terms of 1:

v1 � 1
��������������

q
k� 2l

r
; v2 � 1

���
q
l

r �����������������������
1ÿ qa1x1

4l

1� �qa1x1
4l �2

vuut ; v3 � 1
���
q
l

r �����������������������
1� qa1x1

4l

1� �qa1x1
4l �2

vuut : �40�

If qa1x1=4l � i (here i2 � ÿ1), the second and third expressions of Eq. (39) give 1 � 0; thus, solution Eq.
(40) exists for all real x. If x!1, both v2 and v2 tend to zero.

Computing the square roots in Eq. (40) in case, 1 is a pure complex number, one gets (signs are im-
material):
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v2 � v3 � r
������
q

2l

r i

������������������������������������
1�

�����������������������
1� �qa1xr

4l �2
qr

ÿ
����������������������������������������
ÿ1�

�����������������������
1� �qa1xr

4l �2
qr

�����������������������
1ÿ �qa1xr

4l �2
q ; �41�

and therefore x 6� 0) Re�vj� 6� 0. This last remark shows that for x 6� 0 solutions of the kind (38) are
always possible, but with v2 and v3 never purely imaginary, i.e. an exponential increase or decay of the
solution along x1 is always present.

In Fig. 1, we plot the real and the imaginary parts of solution (41) versus qa1xr=4l; values of the latter
variable close to �1 give the larger gyroscopic e�ect on the wavelengths.

5.2. Vibrations of beams

A second example that illustrates the possibilities of a mechanical system with embedded gyroscopes is
that of an Euler±Bernoulli linear elastic beam experiencing small displacements u. To adapt our general
results to this particular case, we need to introduce the beam's geometry, i.e. a slender cylinder along x1,
with the kinematic constraint of conservation of normal cross-sections; we write the displacement ®eld as
follows:

u1 � �u1 ÿ �u3;1x3 ÿ �u2;1x2;
u2 � �u2;
u3 � �u3:

8<: �u � �u�x1�:

Developments are straightforward if one takes the axes x2 and x3 with origin in the centre and along the
principal inertia axes of the cross-section ± calling q2 and q3, their relative radii of inertia, and E, the
Young's modulus of the material, the beam is made of ± and if one neglects the rotational inertia of cross-
sections in writing the equations of motion of the beam. Furthermore we assume the micro-stress tensor S
be null and take a simpli®ed form for the inertia forces of the gyroscopes valid if their axes are ®xed to the
main body and their spin is constant in time and in space (Constraint 2).

Fig. 1. Plot of Re v2=r
�����������
2l=q

p� �
(below) and Im v2=r

�����������
2l=q

p� �
(above) versus qa1xr=4l.
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Therefore, the two equations of lateral motion of the beam are

�u2;ss � Eq2
3

q �u2;1111 � 1
2
a1x�u3;11s � 0;

�u3;ss � Eq2
2

q �u3;1111 ÿ 1
2
a1x�u2;11s � 0:

8<: �42�

If the beam is pinned at the ends x � 0 and x � �x, then the wavelengths must be an integer fraction of �x=p
and we can start from the assumption:

�u2 � exp

�
� i

i2px
�x
� s

�s2

� ir2s

�
; �u3 � exp

�
� i

i3px
�x
� s

�s3

� ir3s

�
(with integers i2 and i3 and real �s2, �s3, r2 and r3).

Eqs. (42) lead to the conditions:

1
�s2

2

ÿ r2
2 � Eq2

3

q �i2p
�x �4 ÿ 1

2
a1x�i3p

�x �2 1
�s3
� 0;

1
�s2

3

ÿ r2
3 � Eq2

2

q �i3p
�x �4 � 1

2
a1x�i2p

�x �2 1
�s2
� 0;

r2

�s2
� a1x

4
�i3p

�x �2r3;
r3

�s3
� ÿ a1x

4
�i2p

�x �2r2;

8>>>>>><>>>>>>:
and thus,

1
�s2
� a1x

4
�i3p

�x �2 r3

r2
; 1

�s3
� ÿ a1x

4
�i2p

�x �2 r2

r3
;

Eq2
3

q i4
2 � �a1x

4
�2�r3

r2
�2i4

3 � 2�a1x
4
�2 r2

r3
i2

3i
2
2 � ��xp�4r2

2;

Eq2
2

q i4
3 � �a1x

4
�2�r2

r3
�2i4

2 � 2�a1x
4
�2 r3

r2
i2

3i
2
2 � ��xp�4r2

3:

8<: �43�

The ®rst two equations give the time constant characterising excitation or damping of vibrations; note
that, s2 having sign opposite of that of s3, if movements are damped in direction x3, they are excited in the
orthogonal direction. If diversion of energy from one mode to another is sought, the system is of increasing
pro®ciency, if x > 0, when r3 � r2, i.e. the more the beam is sti� against bending around direction x3 than
around x2, the faster the energy content of movements in direction x2, is diverted to oscillations in the
orthogonal direction (the case x < 0 leading to symmetric conclusions).

Notice also that the e�ect of gyroscopes is greater for the higher modes with geometric progression.
The second couple of expressions in Eq. (43) determines the circular frequencies r2 and r3, for every

settled couple of integer numbers �i2; i3�. Synchronous solutions (i.e. solutions with equal frequencies) for
the two orthogonal motions exist under condition:��������

Eq2
3

q

s
>

a1x
4

>

��������
Eq2

2

q

s
or ��������

Eq2
3

q

s
<

a1x
4

<

��������
Eq2

2

q

s
;

and have wavelengths satisfying the relation:

i2

�������������������������������
Eq2

3

q
ÿ a1x

4

� �24

s
� i3

�����������������������������������
ÿEq2

2

q
� a1x

4

� �24

s
;
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a condition which is worth comparing with that occurring for x � 0:

i2

i3

�
�����
q2

q3

r
:

Particular solutions are those with equal characteristic time (in absolute value):

j�s2j � j�s3j � �s ) i3r3 � �i2r2;

in this case the two conditions linking the circular frequencies and the indices of wavelengths become
(cf. Eq. (43)):

Eq2
3

q � �a1x
4
�2�r2

r3
�2�1� 2 r2

r3
�

h i
i4

2 � ��xp�4r2
2;

Eq2
2

q � �a1x
4
�2�r3

r2
�2�1� 2 r3

r2
�

h i
i4

3 � ��xp�4r2
3:

8><>: �44�

In the case q2 � q3 � �q, i.e. if the beam is equally sti� in the two bending directions (and thus in all
directions), synchronous solutions of Eq. (44) exist; then r2 � r3 � �r and i2 � i3 � �i and the circular
frequency depends on the vibration mode as follows:

�r � �ip
�x

 !2
���������������������������������
E�q2

q
� 3

a1x
4

� �2

s
: �45�

This shows that the circular frequency of any mode increases when x 6� 0 and suggests the possibility of
damping oscillations through a ®tting control (of bang±bang type) of x (Brocato, 1996).

In Fig. 2, we show the graph of function (45) for the seven ®rst modes.
When q2 6� q3, solutions are still available but cumbersome. For instance, we have

r2 � i2p
�x

� �2
�������������������������������������������������������
Eq2

2

q
�A2�1�A�

4

a1x
4

� �2

s

Fig. 2. Plot of �x2
�����������
q=E�q

p
�r versus

�����������
q=E�q

p
a1x for �i � 1; . . . ; 7.
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with de®nitions:

A :� 2q
3Eq2

2

�a1x
4
�2 � C

B
�B

� �
; B :� D�

���������������������
ÿC3 �D2

p� �1
3

;

C � �a1x
4
�2 �a1x

4
�2 � 3

Eq2
2

q

� �
; D � 27

2

E3q4
2
q2

3

q3 ÿ �a1x
4
�6 ÿ 9

2
�a1x

4
�4 Eq2

2

q :

6. Concluding remarks

We have proposed the mechanical model of a body endowed with a di�use distribution of small gy-
roscopes. The system is reminiscent of a Cosserat type of continuum, but with peculiarities due to the
nature of its ®ne details: we are imagining here a concrete structure, we are not aiming at a model for ether.

Thus, in Section 2.1, we have given details on how the linkage between a gyroscope and the main
structure can be made.

The precise mathematical description of this linkage allows us to put on a ®rm base some ideas already
presented in the literature (D'Eleuterio (1984) and D'Eleuterio and Hughes (1984)), and generalise them to
a continuum model, the behaviour of which need not be linear and elastic.

In Section 4, after giving the equations of motion for the general system, we have investigated on the
possibility of constrained evolutions of the microstructure. Especially Constraint 2, i.e. gyroscopes with
axis ®xed on the capsule and constant axial speed relative to the capsule itself, is interesting for applications
in the ®eld of controls.

In Section 5 we dealt with two examples, applying the model to a linear elastic homogeneous material
respectively in the case of plane strain and in the case of Euler±Bernoulli beams. It appears then that the
possibility of acting on the gyroscopes to in¯uence ± if not constrain ± their evolution, allows us to control
the gross motion of the system. We emphasise that not only diversion of energy to orthogonal movements is
obtainable with this method, but also, through a sequence of ®t bang±bang controls, damping of oscilla-
tions (Brocato, 1996).

Notice that, in concrete instances, optimal control can be achieved only through an appropriate ar-
rangement of sensors, processors, actuators, which allows, through on-line fast processing, a response
which can be taken to be instantaneous, having mechanical time constants in mind.
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